Closed-form marginal likelihood in Gamma-Poisson factorization
نویسندگان
چکیده
We present novel understandings of the Gamma-Poisson (GaP) model, a probabilistic matrix factorization model for count data. We show that GaP can be rewritten free of the score/activation matrix. This gives us new insights about the estimation of the topic/dictionary matrix by maximum marginal likelihood estimation. In particular, this explains the robustness of this estimator to over-specified values of the factorization rank and in particular its ability to automatically prune spurious dictionary columns, as empirically observed in previous work. The marginalization of the activation matrix leads in turn to a new Monte-Carlo Expectation-Maximization algorithm with favorable properties.
منابع مشابه
Marginal likelihood for distance matrices
A Wishart model is proposed for random distance matrices in which the components are correlated gamma random variables, all having the same degrees of freedom. The marginal likelihood is obtained in closed form. Its use is illustrated by multidimensional scaling, by rooted tree models for response covariances in social survey work, and unrooted trees for ancestral relationships in genetic appli...
متن کاملAccurate Inference for the Mean of the Poisson-Exponential Distribution
Although the random sum distribution has been well-studied in probability theory, inference for the mean of such distribution is very limited in the literature. In this paper, two approaches are proposed to obtain inference for the mean of the Poisson-Exponential distribution. Both proposed approaches require the log-likelihood function of the Poisson-Exponential distribution, but the exact for...
متن کاملNonparametric Bayesian Factor Analysis for Dynamic Count Matrices
A gamma process dynamic Poisson factor analysis model is proposed to factorize a dynamic count matrix, whose columns are sequentially observed count vectors. The model builds a novel Markov chain that sends the latent gamma random variables at time (t − 1) as the shape parameters of those at time t, which are linked to observed or latent counts under the Poisson likelihood. The significant chal...
متن کاملPairwise likelihood estimation for multivariate mixed Poisson models generated by Gamma intensities
Estimating the parameters of multivariate mixed Poisson models is an important problem in image processing applications, especially for active imaging or astronomy. The classical maximum likelihood approach cannot be used for these models since the corresponding masses cannot be expressed in a simple closed form. This paper studies a maximum pairwise likelihood approach to estimate the paramete...
متن کاملModel order estimation using Bayesian NMF for discovering phone patterns in spoken utterances
In earlier work, we have shown that vocabulary discovery from spoken utterances and subsequent recognition of the acquired vocabulary can be achieved through Non-negative Matrix Factorization (NMF). An open issue for this task is to determine automatically how many different word representations should be included in the model. In this paper, Bayesian NMF is applied to estimate the model order....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.01799 شماره
صفحات -
تاریخ انتشار 2018